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The rate of longitudinal dispersion of a contaminant in a current depends upon con- 
centration variations across the flow. These variations are generated by the qombi- 
nation of a longitudinal concentration gradient and a cross-stream velocity 'shear. 
However, the response is not instantaneous and so not only is the disprsion coefficient 
D(7) time-dependent, but also there is a memory of the concentration distribution a t  
earlier times. In  this paper it is shown that these features are accurately reproduced 
by the delay-diffusion equation 

where 
free decay of cross-stream concentration variations. 

is the source strength, U the bulk velocity and fi a transport velocity for the 

1. Introduction 
Taylor (1953, 1954) showed that after a sufficient length of time has elapsed, the 

longitudinal dispersion of a contaminant in a laterally confined flow is governed by 
a constant-coefficient diffusion equation. Unfortunately, in many applications there 
is insufficient time available for this asymptotic state to be reached. Indeed, some of 
Taylor's own experiments are not consistent with his theory (Chatwin 1971). 

To remedy this shortcoming Gill & Sankarasubramanian (1 970) have advocated 
that a variable coefficient diffusion equation 

a,c + & ( t )  axe - [ K +  D(t)]  a:c = 0, (1.1) 

be used to model all stages of the dispersion process. Relying upon this hypothesis 
they have calculated the necessary time dependence of the transport velocity & ( t )  
and of the shear dispersion coefficient D(t) .  Equation (1.1) has the remarkable proper- 
ties that the area, centroid and variance of the bulk concentration distribution E(x, t )  
are all exact. Moreover, the inclusion of systematic correction terms 

m 

i = 3  
- r , ~ , ( t ) a : c  (1.2) 

(Gill & Sankarasubramanian 1970) leads to exact results for the higher-order moments 
also (De Gance & Johns 1978). 

In  a severe criticism of variable diffusivity equations, Taylor (1959) pointed out 
that when there are discharges at several times the dispersion coefficient must simul- 
taneously have several different values. Gill & Sankarasubramanian (1 972) show how 
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this mathematical complication can be dealt with. However, it is difficult to  reconcile 
the equations with the underlying physical processes. Taylor (1959) concluded ‘It 
seems therefore that no physical meaning can be attached to the use of equations in 
which the coefficient of diffusion varies with the time of diffusion, even though the 
formulae produced by their use do represent adequately the concentrations in parti- 
cular cases ’. 

The longitudinal dispersion equation has its origins in the cross-sectionally averaged 
advection-diffusion equation 

Here c is the concentration, u the longitudinal velocity, K the molecular diffusivity, 
q the source strength, and over-bars denote cross-sectional average values. Thus, as 
was first recognized by Taylor (1 953), the essential ingredient for a bulk model is an 
expression for the cross-sectional variations of concentration c - E in terms of E .  

Shear distortion can be thought of as twisting longitudinal gradients over into 
lateral gradients. At large times after contaminant release this leads to c - C being 
proportional to a,E (Taylor 1953). Guided by this asymptotic result Gill & Sankara- 
subramanian ( 1970) proposed the representation 

m 

c - c = f j ( tJ ,  z, t )  a$c(x, t ) .  
j = 1  

Thus, the concentration variations across the flow are related to the gradient of the 
instantaneous local bulk concentration. Substitution of this representation into 
equation (1.3) yields the composite equation (1.1), (1.2).  

The basis of the present work is the recognition that at small times after contami- 
nant release, equation (1.4) is not an efficient representation of the cross-stream 
dispersion. There is only a gradual response to  the continuing generation of lateral 
concentration gradients via the velocity shear. Moreover, the transport velocity for 
the free decay of lateral concentration gradients is different from the bulk velocity 
(i.e. an average of the velocity profile weighted towards regions of higher concentration 
gradient). This leads us to pose the new ansatz 

(1.5) 1 c - c  = j=1 ~ ~ ~ z j ( 2 / , 2 , 7 ) a $ F ( x - - S n 7 ~ ( 7 ’ ) d 7 ’ , t - 7  d7. 
m 

Thus, there is a fading advected memory of the concentration gradient a t  earlier 
times. 

At the lowest-order truncation ( j  = 1) substitution of the representation (1.5) into 
equation (1.3) leads to the delay-diffusion equation 

Consistency between the alternative representations (1.4), (1.5) requires that 

‘1 = ’ T f I *  (1.7) 

This is why the delay-dispersion function a, D in equation ( 1  -6) is the time derivative 
of the shear-dispersion coefficient D(T).  This close connexion with equation (1.1) also 
leads to  the area, centroid and variance for C(x, t )  being exact. Indeed, with the optimal 
choice for C ( 7 ’ )  the skewness is also exact. 
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The crucial new feature of equation (1.6) is that there is no restriction to  sudden 
discharges a t  a single point in time. The rate of dispersion associated with earlier dis- 
charges is relatively large because t.he memory term extends further back in time. 
Equivalently, the concentration variations across the flow have had more time to 
approach equilibrium with the generation mechanism. 

2. Longitudinal and transverse dispersion equations 

have the form 

with 

As the starting point for our mathematical analysis we take the full equations to 

(2.1) I a t C  + U ( y ,  2 )  a& - K a z C  - V .  ( K V C )  = q ( X ,  t )  

K n . V c = O  on aA. 

Here K ( Y ,  z )  is the diffusivity, V t,he t,wo-dimensional gradient operator (av, an), n the 
outward normal, ad the impermeable boundary, and 4 the uniform discharge rat’e. 
For simplicity t,he analysis of non-uniform discharges is deferred to  a later paper. 

If the ansatz (1.5) is substituted into the cross-sectionally averaged form of the 
dispersion equation (2.1)) then we arrive a t  the integro-diflerential equat’ion 

Here, by comparison with equation (1.3), we have included extra terms which arise 
when the diffusivity K is non-constant. We note that the higher-order terms in equation 
(2.2) depend only upon the concentration profile at previous times. Thus, the essential 
mathematical character is determined by the (a, + U - K a:) terms, and it is acceptable 
to truncate the Z j  series a t  any level. Of course, our analysis is directed towards making 
a truncation quantitatively as well as qualitatively acceptable. 

By design, the st’ructure of the series (1.5) is preserved under differentiation. I n  
part,icular, using integration by parts with respect to 7 ,  we can derive the expression 

where the series expansion for 8,C is given by equation (2.2) above. Thus, written in 
full, the field equations and boundary conditions (2.1) for the contaminant dispersion 
become 

I 
W 

[l,(y, 2 , O )  + u - U] a,c + [E,(y, z, 0) + i? - K ]  a:? + Zj(yt 2 , O )  ai.3 
j = 3  

with 
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Since the solution procedure must be valid for any C profile, it is natural to require 
that the individual equations corresponding to each a $ E  coefficient and integrand be 
satisfied separately. This prescription leads to the sequence of initial-boundary-value 
problems 

with (2.5) i aT1, - v . (KVZ,) = 0, 

Kn.VI, = 0 on aA, and I, = ii-u a t  7 = 0, 

a,z,-o. (KVZ,) = C ( ~ ) I , + ( & - U Z ~ ) ,  

K n . V Z , = O  on aA, and Z , = K - F  at 7 = 0 ,  
with } (2.6) 

with } (2 .7)  

- 
a T 1 j  - v. ( K V E j )  = c(7) zj-l + (UZj-l - Ulj-l) + (KZjpz  - q.-$), 

K n . V l j = O  on aA, and l j = O  a t  r=O. 

The physical interpretation of these equations is as a description of longitudinally 
uniform cross-sectional contaminant variations. The initial values and the forcing 
terms are analogues of the generation mechanism of non-uniform advection. 

By induction we can infer that  the initial growth rates of the weight functions are 

‘1 (2.8) 
l Z j  = 0(7j), Izi+l = O ( T ~ )  when K = K, 

ZZj = o(~j-’), IZj+, = O ( d )  when K + F. J 
Thus, as is also the case with Gill and Sankarasubramanian’s method, for small times 
it is the low derivative terms in the bulk equation (2.2) which gives the largest con- 
tribution to the shear dispersion. Conversely, a t  large times we can expect that the 
ever-increasing length scale of the contaminant distribution c(x, t )  ensures that the 
higher derivatives are small, and again the low-derivative terms are dominant. 

3. Delay-dispersion function 
The eigenfunctions $m for the decay of lateral concentration variations provide a 

convenient means of solving equation (2.5). These functions satisfy the eigenvalue 
problem 

with (3.1) 1 V - ( ~ V $ m ) + 4 n $ m  = Q ,  

K n . V l l r , = O  on aA. 

The lowest mode $,, = 1 has A, = 0 and corresponds to  the steady state of a cross- 
sectionally uniform concentration distribution. To represent the velocity profile 
u ( y ,  z )  we int’roduce the coefficients 

-- 
urn = a$m/ ($& )’- (3.2) 

From the eigenfunction representation of the initial conditions, it is clear that the 
solution ll(y, z , 7 )  of the homogeneous equation (2.5) can be written 

m 

m = l  
4 = - z U?neXP ( - L 7 )  {$??&A X ) / ( E P ) .  (3.3) 
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Also, in terms of urn the delay-dispersion function in the lowest-order truncation of 
the bulk equation (2.2) is given by 

m 

a,D = Z,(ii-u) = ;T, u:exp(-hm7). 
m = l  

(3.4) 

If Reynolds' analogy is applicable, and there is a constant ratio between the diffusi- 
vity K and the viscosity v, then we can derive a general expression for urn. Our starting 
point is the longitudinal momentum equation 

with i V.(YVU) = - G ,  

u = O  on aA, 
(3.5) 

where - G is the longitudinal pressure gradient. Multiplying the field equation by $rn, 
and repeatedly applying the divergence theorem we finally arrive a t  the result 

Thus, to calculate urn it suffices that we know the distribution of the drag forces 
VVU . n around the boundary. 

4. Selection of the velocity shift 
Proceeding to the non-homogeneous problem (2.6) for Z2(y, z, r )  we introduce further 

Thus, if we represent &(y, z ,  r )  by the eigenfunction expansion 

m 

' 2 ( ~ '  2, 7) = x a m ( 7 )  ~ X P  ( - hm7) W m ( y )  z)/~E)fr>, 
m = l  

then the amplitude factors am(r) satisfy the ordinary differential equations 

with 
a, = Ern a t  r = 0. I 

The solution can be written 

and is explicitly dependent upon the chosen value of the velocity shift G(7'). 
What we ideally would wish to achieve with our choice for 647') is that the solutions 

of the approximate equation (1.6) should be as close as possible to the solutions of the 
exact equation (2.1). Unfortunately, it is only in exceptional cases that the exact 
solution is available. Instead, we shall pursue the approximate analysis to  one further 
level and iise this higher-order equation as the basis for selectJing i i ( 7 ' ) .  
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Substituting the eigenfunction representation for I,, 1, and K~ into the bulk equation 
( 2 . 2 )  we find that the integrand for the a $ F  contribution to the dispersion is given by 

-- ~ 

11(K - K )  -k 12(U - 2) 

m = l  

m 

= x kmumexp ( - 4 , 7 )  + 
m = l  

1. exp ( - A n 7 )  - exp ( - Am7)  W 

+ 2 c unumumn( Am - An m-I n f m  
(4.5) 

The first term on the right-hand side shows the effect of lateral variations in the 
diffusivity, and the next two terms represent a higher-approximation to the shear 
effects than is given by the delay-dispersion function (3.4).  Clearly, the optimal 
choice for ii is to make the correction for shear effects be identically zero 

- 
m 

m = l  
aTDjoT [2”L(7’) - U ]  d7‘ = T I: [umnL - u] uiexp  ( - Am7) 

1. (4.6) 
exp ( - A,7) - exp ( -A,?) W 

+ m = l n # m ,  I: c unUrnumn[ Am - A, 

I n  particular, in the limits of small and of large times we have 
_ _ _ ~  

C(0) = U+ (u -U)3 / (u -Z)2 ,  ii(C0) = Ull. (4.7) 

It can readily be inferred that when ii(7‘) is less than U the solutions of the new model 
equation (1.6) tend to  become skewed toward the point of release. At the front the 
shear term ‘remembers’ the much weaker gradients far forward of the centroid and 
the contaminant flux is correspondingly reduced. Conversely, far to the rear\ the shear 
term ‘remembers’ the higher gradients close to the centroid and the contaminant flux 
is increased. Hence, the front remains relatively steep while the rear of the contami- 
nant distribution is drawn out. 

The extent of the skewness depends upon the difference between 2“L and\U. Thus, 
the accuracy of equation (1.6) hinges upon the selection of 647‘). When K = i? the 
choice (4.6) for C(7’)  ensures that the skewness is exact. To show this, we note that if 
we multiply the bulk equation ( 2 . 2 )  by xn and repeatedly integrate by parts, then 
only the terms up to a;C contribute t o  the nth moment W .  When K = i? the:optimal 
choice (4.6) eliminates the a i C  term and so the one-term truncation (1.6) encompasses 
the next approximation also. Hence the area, centroid, variance and skewness are all 
exact. For later reference we record that in axes moving with the bulk velocity U the 
equations for the second and third moments P),  C(3) take the form 

r t  r7 

5. Telegraph equation 
Thacker (1976) showed that for a flow with two well-mixed layers and with negli- 

gible horizontal diffusivity, the bulk concentration C(x, t )  satisfies a telegraph equa- 
tion. Thus, his exact results provide ,z test of our model equation (1.6).  
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In  this limit there is only one non-trivial eigenmode 9,. Thus the summations (3.4), 
(4.6) involve just a single term and equation (1.6), with i? neglected, becomes 

a& + ua,E - u: exp ( - A17) ~ : F ( x - T u ~ ~ ,  t -7) d7 = q(x, t ) .  (5.1) 

Applying the differential operator (a, + ull a, + A,) to both sides of this equation, we 
recover the telegraph equation 

(5.2) 

!Om 

(a, + U,, a, + A,) (a& + u a$) - A2,U2, a:c = (a, + ullax + A,) q.  
This is the equation (3) of Thacker (1976) with the minor generalizations that the bulk 
velocity ii is non-zero, and the layer depths are unequal (i.e. ull # u). 

A mathematically convenient feature of the telegraph equation is that it admits of 
exact solutions. Thus, we seek to approximate equation (1 -6) in such a way that we 
obtain a telegraph equation, but with a minimum loss of accuracy. The close con- 
nection between the delay diffusion equation (1.6) and a telegraph equation can be 
seen from the exact expression 

(a, + v a, + A )  (a, + u a, - i? a:) c - a, D(0)  a:c 

= (a,+va,+A)ij+ [a:D+Aa,D]a:E 

To eliminate the integral terms it suffices that 8, D is proportional to exp ( - AT) and 
that G(T’) has the constant value v. 

At large times the growth rate of the variance will be exact provided that a, D has 
the form 

a7 D = AD(co) exp ( -AT) .  (5.4) 

Also, from equations (4.8), (4.9), we infer that the value of iY2) and the growth rate for 
i33) will be asymptotically correct provided that the integrals 

IOm [ D ( T ) - D ( o o ) ] ~ T ,  jOm 87D/07 “&(T’)--;il]dT’dT, (5.5) 

have the correct values. The resulting selections for h and v are given by weighted 
averages respectively of Am and umn : 

m m 

m=l m=l m= 1 n f m  

Chatwin (1970) showed that at large times the variance and skewness can be 
expressed in terms of a single function g(y, z )  : 

with 

16 

(5.8) 

F L U  105 

v.  ( K V g )  = u - U ,  

ij = 0, and m . V g  = 0 on aA. 
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Physically g can be interpreted as being the shape factor for the concentration varia- 
tions across the flow in the well-mixed stage. Guided by Chatwin's results, we find 
that the formulae (5.6), (5.7) for h and v can be rewritten 

_ -  - _  
A = u g / g 2 ,  21 = u g 2 / g 2 ,  D(co) = uT. (5.9) 

Thus, in keeping with the heuristic basis of the new method, v is the (constant) trans- 
port velocity associated with the longest persisting lateral concentration variations. 

With the approximations (5.4)) (5.9) and with i? neglected the longitudinal disper- 
sion equation takes the form 

(a, + 2, a, + A )  (a, + u a,) c - AD(co) a: c = (a, + 2, a, + A )  4. (5.10) 

This equation is hyperbolic with characteristic velocities 

u* = 8(2,+U)F(hD(co)+~(v-u)2)~.  (5.11) 

The equivalent two-layer flow is 

'I (5.12) 
area fraction *( 1 - s/[l + s2]*) with velocity u+, 

area fraction *(I  + S/[I + ~ 2 1 4 )  with velocity u-, J 
where s is the skewness parameter 

-- 
s = *(v - ;ii)/[hD(co)]t = *(u -2 )  g2 /ug(g2)+ ,  (5.13) 

Thus, the characteristic velocities are precisely the flow velocities in the two layers. 
Also, the tendency to develop positive or negative skewness can be related to whether 
the smaller fraction of the flow is fast or slow moving (i.e. the tails of the contaminant 
distribution are associated with the smaller layer of fluid). 

In  axes moving with the bulk velocity 5, the fundamental solution of the telegraph 
equation (5.10) can be written 

Io(R) [H(x  - (u- - u) t )  - H ( x  - (u+ - u) t ) ]  i - (a,+(V--;ii)a,+h) 
c =  

2[AD(co) + &(v - U)2]+ 

with 
h3D(co) [AD(co) t2+  (v - ;il) xt - 2 2 3  

4[hD(a3) + &(v - U)2]1" 
R2 = (5.15) 

Here I. is the modified Bessel function of order zero, and H is the unit step function 
which serves to indicate that the contaminant is confined between the extreme 
characteristics. Figures ( 1  a, b,  c) show the development of the solution when the skew- 
ness parameter has the values s = 0, *, 1.  For negative s the profiles are mirror images 
about the centroid position x = 0. The concentration spikes at the extreme character- 
istics can be interpreted as an exaggerated counterpart of the tendency for an expo- 
nentially decreasing quantity of contaminant to be carried a t  the maximum and 
minimum flow velocities (Sullivan 1971; Chatwin 1971, 1973). It is noteworthy that 
even a t  large values of At the profiles have not yet attained theeventualGaussianshape. 
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(C) 

FIGURES 1 ( a - c ) .  Telegraph equation solutions fcr the dispersion of a sudden 
discharge when the skewness parameter has the values 0, g, 1. 

16-2 
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6. Method of application 

procedure is as follows: 
To derive the delay-diffusion equation (1.6) for a given flow situation, the order of 

(i) Determine the velocity field and the eigenfunctions $m; 

(ii) Use the formulae (3.6) and (3.4) to calculate the delay-dispersion function 8,D; 
(iii) Evaluate the coefficients u,,, and solve equation (4.6) for the velocity shift 

Alternatively, if asymptotic rather than exact moments are acceptable, then we 

(i) Determine the velocity field u(y,  z )  and the shape factor g(y, z ) ;  
(ii) Use the formulae (5.9) to  calculate the decay rate h and the constant velocity 

E(T1) .  

can use the simpler procedure: 

shift v. 
The remainder of this paper gives three illustrative examples of these procedures. 

7. Poiseuille pipe flow 
For laminar flow in a circular pipe of radius a we have 

u = 2ii[l-  ( T / U ) ~ ]  with G = 8iiv/a2. ( 7 - 1 )  

The circular symmetry means that we can restrict our attention to pure radial eigen- 
modes : 

with 

where Jo is the zero-order Bessel function of the first kind. 
The drag forces are uniform around the pipe, thus from equation (3.6) we find 

urn = - 8 i i / y i .  (7.3) 

Substituting this result into equation (3.4) we arrive at the formula 
m 

8, D = 6 4 9  C ym4 exp ( - Y % K T / U ~ ) ,  
m= 1 

(7.4) 

(see figure 2) in agreement with the work of Aris (1956, 3 4).  I n  particular, we record 
that 

8,D(O) = ( U - U ) 2  = +E2. (7.5) 

From Gill & Sankarasubramanian (1972, equation (33)),  or by direct calculation, 
we can deduce that 

u,, = $ii, u,, = - 8;i2(y&+y3/(y&-yi)2 for m # n. (7.6) 

Using these values in equation (4.6) we find that i i(rl)  has the time-dependence shown 
in figure 3. A distinctive feature is that  .ii - ;i2 is initially zero. Thus, for a symmetric 
discharge the concentration distribution initially remains symmetric. However, as 
r‘ becomes larger the velocity shift .ii(7’) - ii becomes positive and the skewness de- 
velops towards the front. Qualitatively this is what we could anticipate from the 
fact that the smaller fraction of the flow (near the axis) is fast-moving. 
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- 0.03 

- 0.02 

- 0.01 

0.1 0.2 
FIGURE 2. Exact (-) and telegraph equation approximations (- -) to the memory 

function a7 D and the shear dispersion coefficient D for Poiseuille pipe flow. 

0.3 

0.2 

0.1 

I 

0.05 0.1 
FIGURE 3.  Optimal and weighted-mean values of the velocity shift G(T') --U. 

for Poiseuille pipe flow. 

To apply the telegraph-equation analysis, we first need to  calculate the shape 
factor g: 

(7 .7 )  
ZU2 

2 4 ~  
g = - ( 2  - 6 ( ~ / a ) ~ +  3 ( r / ~ ) ~ )  

(Chatwin 1970, equation (4.1)). Performing the cross-sectional averages (5.9), we then 
arrive a t  the results 

h = 1 5 ~ / ~ 2 ,  = gG, D(CO) = 2C2a2/48~. (7 .8)  
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. 

+ 

I 
0.1 

0 

L. 
0 -0 

i 
m 

4 

- 

0.2 

Dimensionless distance XK/EU’ 

FIQURE 4. Exact (--), delay-diffusion (+ + +), Gaussian (. - -)  and telegraph equation (- -) 
concentration profiles a t  a time 0.1 & / K  after discharge in Poiseuille pipe flow. 

Thus, the telegraph equation (5.4) takes the form 

(a,+$Ua,+ 1 5 ~ / a ~ ) ( a , c + U u a , a ) - ( 5 U ~ / 1 6 ) a ~ c  = (a,+%Ua,+ 1 5 ~ / a ~ ) q .  (7.9) 

By construction the telegraph equation yields a very accurate description of the 
contaminant distribution a t  large times, with exact results for the area, centroid 
variance and skewness. Thus, i t  is of considerable interest to ascertain a t  what stage 
the model equation (7.9) becomes useful. Figure 4 compares the solution at At = 1-5 
with the numerical results of Gill & Ananthakrishnan (1967) and with the Gaussian 
solution of equation (1 .1) .  The concentration spikes are unrealistic although their 
positions do correspond closely to the double-peaked structure of the numerical 
solution. The Gaussian solution exhibits none of this asymmetry. Indeed, it has to 
be admitted that at this comparatively early stage of the dispersion process neither 
the diffusion equation (1 .1)  nor the telegraph equation (7 .9)  can be regarded as giving 
adequate predictions. Of course, the delay-diffusion equation (1.6) is far superior to 
either of these simple models, but with the disadvantage of numerical rather than 
analytic solutions. 
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Asymptote 
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0.02 

0.0 1 

FIQURE 5. Exact (-), and telegraph equation approximations (- -) to the memory function 
D and the shear dispersion coefficient D for plane Poiseuille flow. 

8. Plane Poiseuille flow 
For laminar flow between parallel plates we have 

u = @[1- ( ~ / d ) ~ ]  with CT = 3Gv/d2, (8.1) 

where 2d is the plate separation. The symmetry of the velocity profile about y = 0 
means that it suffices to involve only the even eigenmodes 

$rn/(E)+ = J2 cos (mnyld), Am = m2n2K/d2. (8 .2 )  

Using these results in equation (3 .6 )  we deduce that 

urn = ( - l)m+l 3 4 2  5/m2n2, (8.3) 

and the delay dispersion function (3 .4 )  is given by 

(see figure 5). When we allow for the different definition of the plate separation, this 
agrees with the result derived by Dewey & Sullivan (1979, equation ( 3 2 ) ) .  

To evaluate the coefficients urn,, we first note that 
- -  

$rn$n/Wk)' ($:I' = c o s ( ( m - n ) ~ / d )  + c o s ( ( m + n ) ~ / d ) *  (8.5) 

It then follows from the definitions (3 .2 ) ,  (4.1) that 

umrn = U + Uzrn/J2,  umn = (urn-m + Urn+n)/J2t \ 
i.e. I 
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0.05 0.1 
I 1 

Kr/dZ -b 

Asymptote 

-0.1 

-0.2 

-0.3 1 
FIGURE 6. Optimal and weighted-mean values of the velocity shift C(7') - ii 

for plane Poiseuille flow. 

Pigure 6 shows the time-dependence of C(r ' )  which results from substituting these 
coefficients into equation (4.6). I n  the limits of small and of large times we have 

G(O)-U = -+Ti, u(m)-Z = -3Z/4n? (8.7) 

Thus, there is initially a strong tendency to develop negative skewness which dim- 
inishes at later times. The sign of the skewness is precisely what we would expect 
from the fact that it is the smaller fraction of the flow (near the walls) that is slow- 
moving. 

The shape factor g(y) required for the derivation of the telegraph-equation approxi- 
mation is given by 

and from equation (5 .9 )  we arrive at the results 

h = 10K/d2, V = 29U/33, D(C0) = U 2 d 2 2 / 1 0 5 ~ .  (8.9) 

Hence, the telegraph equation for longitudinal dispersion in plane Poiseuille flow is 

(a,+g$Ua,+ lO~/dZ)(a ,c+Ua,c)-(4u~/21)a~c = (a,+@a,+ 10K/d2)q. (8,lO) 

Figure 7 compares the solution a t  At = 4 with the numerical results of Jayaraj & 
Subramanian (1  978), and with the Gaussian solution of equation (1 .1 ) .  As was the 
case with figure 4, the two-layer character of the telegraph equation has the unrealistic 
consequence of concentration spikes moving with the layer velocities. However, a t  
this later stage in the dispersion process, the area under the spikes has become rela- 
tively small and the telegraph-equation solution is much more accurate than the 
Gaussian profile. Again, the very best accuracy is achieved by the numerical solution 
of the delay-diffusion equation. 
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Dimensionless distance xK/iid2 

FIQURE 7.  Exact (--), delay-diffusion ( + + + ), Gaussian (a * a ) ,  and telegraph equation (- -) 
concentration profiles at a time 0.4 d 2 / K  after discharge in plane Poiseuille flow. 

9. Turbulent open-channel flow 

file 
As our final example we take the flow to have the classical logarithmic velocity pro- 

u = lii + (u,/k) (1 +In (1 + z /h) )  with G = u2,/h, (9.1) 

where u* is the friction velocity, h the water depth, and k is von KbrmBn’s constant 
(about 0.4). The corresponding model for the eddy diffusivities is 

K = 1.’ = ku*h(l +z /h )  ( -z /h) .  (9.2) 

The eigenfunctions for the decay of vertical concentration variations turn out to be 
the Legendre polynomials 

The drag is only a t  the channel bed z = - h, so from equation (3.6) we deduce that 

um = (2m + l)+ ( - l)m+lu*/km(m + 1 ) .  (9.4) 

Substituting this expression into equation (3.4), we get 

(see figure 8). In  particular, we note that 

a,D(O) = u2,/k2. 
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Asymptote 

6 

4 

' 2  

2 4 
FIGURE 8. Exact (-) and telegraph equation approximations (- -) to the memory function 

a7 D and the shear dispersion coefficient D for turbulent open-channel flows. 

To evaluate the coefficients urn,, we first introduce the Wronskian 

W = P,dP,/dz - PndPm/dz. 

(d ldz)  ( (h+z)  ( - z ) W )  = - ( n - m )  (n+rn+ 1) PnPm. 

(9.6) 

(9.7) 

If we multiply through by the velocity profile (9.1) and integrate the left-hand side 
by parts, then we arrive at 

This satisfies the first-order differential equation 

u* (2m+ l)* (2n+ l)-i ( -  l)m-R+l 
urn, = - k In-rnl (m+n+ 1) for rn + n. (9.8) 

A more lengthy argument, based upon simple induction, yields the complementary 
result 

Figure 9 shows the time dependence of C( r ' )  obtained by substituting these results 
(9.8), (9.9) into equation (4.6). I n  the limits of small and or large times we have 

4(0) - U = - 2(u*/k), ~ ( c o )  - U = -+u*/k. (9.10) 

Thus, a t  all stages the tendency is to develop negative skewness but with the effect 
most pronounced early on. Again, this agrees with our general rule that i t  is the 
smaller fraction of the flow (in this case the wall layer) which determines the tail of 
the contaminant distribution. 

The shape factor g(z)  for the longest persisting concentration variations across the 
flow is given by 

(9.1 1) 
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u.r/h - 
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1 2 

FIGURE 9. Optimal and weighted-mean values of the velocity shift 4 7 ’ )  - ?i 
for turbulent open-channel flows. 

Dimensionless distance s jh  

FIGURE 10. Experimental (--), delay-diffusion ( + + + ), Gaussian (. . .) and telegraph equation 
(- -) concentration profiles at  a time 9.9 h/u* after discharge in turbulent open-channel flow. 

-- 
Chatwin (1970)  gives results correct to two significant figures for the integrals g2, ug2. 
Improving the accuracy to four figures we arrive at  the results 

h = 2*107ku,/h,  v = U - O * 6 7 8 1 ~ * / k ,  D(co) = O*4041hu,/k3. (9 .12 )  

Ifwe take k = 0.4, then the telegraph equation for longitudinal dispersion in turbulent 
open-channel flow takes the form 

[ a t + @ -  1 * 7 ~ , ) a , + 0 . 8 4 ~ , / h ]  [ a t E + U 8 , 5 ] - 5 . 3 ~ ~ a ~ C  

= [at+ ( U -  1 * 7 ~ , )  a Z + 0 . 8 4 ~ , / h ] Q .  (9 .13 )  

Elder (1959, figure 4) presents experimental results for E(x, t )  when the parameter 
values are given by 

U = 1 4 ~ , ,  t = 9*9h/u , ,  k = 0.41 .  (9 .14)  

Figure 10 coinparcs these results with thc telegmpli-equation solution ant1 with the 
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Gaussian solution of equation (1.1). As has been further explored by Sullivan (1971), 
the slow-moving fluid near the wall drags out the contaminant distribution into a 
distinctly non-Gaussian profile. However, there is a reasonable overall agreement 
with the telegraph-equation solution. Indeed, there is only minor improvement if we 
use the numerical solution of the delay-diffusion equation. 

This work owes much to  a stimulating discussion with Malcolm Davidson (Austra- 
lian Atomic Energy Commission). Also, I wish to thank B.P. for financial support 
through the award of the Royal Society British Petroleum Company Limited Senior 
Resea)rch Fellowship. 
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